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Abstract: Nel corso degli anni, diversi autori hanno discusso la possibilità di 
considerare la disfunzione somatica (DS) come un “elemento nosologico” rilevabile alla 
palpazione. Ci sono molti aspetti da considerare per quanto riguarda l’eziologia e la 
diagnosi di DS e la letteratura sulle questioni osteopatiche fornisce dettagli sui segni 
fisiologici che la caratterizzano, compresi i cambiamenti della struttura dei tessuti. 
Recenti conoscenze suggeriscono che il modo in cui il tessuto e, in particolare, il tessuto 
connettivo, risponde al trattamento osteopatico può dipendere dalla modulazione del 
grado di infiammazione. L’infiammazione di basso grado (IBG) può agire sulla matrice 
extracellulare (MEC) e sugli elementi cellulari; questi meccanismi possono essere 
mediati dall’acqua biologica. Con le sue molecole organizzate in strutture, chiamate 
zona di esclusione (EZ), l’acqua potrebbe spiegare il funzionamento dei tessuti sani e 
danneggiati e come possono rispondere al trattamento osteopatico con una possibile e 
conseguente normalizzazione dell’EZ. La relazione tra infiammazione e DS e i 
meccanismi coinvolti è descritta da diversi autori; tuttavia, questa revisione suggerisce 
un nuovo modello relativo alle caratteristiche della DS e alle sue implicazioni cliniche, 
collegandola alla IBG. Le alterazioni tissutali rilevabili dalla palpazione osteopatica 
sarebbero mediate dai fluidi corporei e, in particolare, dall’acqua biologica, che ha 
caratteristiche biofisiche ben definite. La ricerca in quest’area è certamente ancora da 
esplorare, ma i nostri suggerimenti sembrano plausibili per spiegare molte dinamiche 
correlate al trattamento osteopatico. Riteniamo che ciò possa aprire in futuro uno 
scenario affascinante di possibilità e conoscenze terapeutiche. 
 
Keywords: exclusion zone water; interstitial fluid pressure; water; somatic dysfunction; 
osteopathic manipulative treatment; low-grade inflammation; antidromic activity; fibroblasts 
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1. Introduzione 
 

     Il principale mezzo a disposizione della medicina osteopatica è la 
palpazione dei tessuti (in particolare quelli del sistema muscolo-
scheletrico), con l'obiettivo di diagnosticare una possibile DS. 
     Diversi autori hanno messo in discussione la DS, sottolineandone 
alcuni aspetti contraddittori e definendola un'entità nosologica 
rilevabile alla palpazione. [1–3] 
     La DS è definita dalla ICD 11 [4] come una “lesione biomeccanica, 
non classificata altrove”; tuttavia, le definizioni non sono equamente 
condivise e codificate dagli osteopati professionisti. [1,5–7] 
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     Secondo il Glossario della Terminologia Osteopatica, la DS si 
caratterizza per la “funzione compromessa o alterata delle componenti 
relative del sistema somatico, che coinvolgono le strutture scheletriche, 
artrodiali e miofasciali”; il trattamento manipolativo osteopatico (TMO) 
è finalizzato al trattamento della DS. [8-10] 
     La letteratura osteopatica descrive la relazione tra la DS e il TMO in 
molti studi. [10-13] 
     Il TMO è una medicina manuale senza farmaci, incentrata sul 
paziente e su tutto il suo corpo. Il TMO ha mostrato effetti positivi in 
diversi campi (ginecologia e ostetricia, neonatologia, gestione delle 
malattie infiammatorie croniche e disturbi muscoloscheletrici). [14-19] 
     Ci sono molti aspetti da considerare in merito all'eziologia e alla 
diagnosi della DS; la letteratura osteopatica fornisce dettagli sui segni 
che la caratterizzano, comprese le alterazioni della struttura dei tessuti. 
[8,20-22] 
     Negli ultimi anni, alcuni autori hanno proposto una varietà di 
modelli interpretativi al fine di chiarire i meccanismi di insorgenza e le 
caratteristiche intrinseche delle alterazioni tissutali riguardanti la DS. 
Tra questi modelli, ci sono anche il ragionamento clinico e procedure di 
decision-making atte a stabilire una routine di trattamento. [23-27] 
     Recenti conoscenze suggeriscono che il tessuto (in particolare quello 
“connettivo”) possa reagire modulando il grado di infiammazione. 
Questa reazione potrebbe caratterizzare qualunque risposta al TMO, 
capace di impattare, secondo recenti studi, i livelli infiammatori del 
tessuto. [28-35] 
     L’infiammazione di basso grado (IBG) agirebbe sulla MEC e ne 
altererebbe la struttura, come accade nella fibrosi, definita come una 
“lesione della componente connettiva in un organo o tessuto”. [36] 
     Queste alterazioni avvengono attraverso meccanismi mediati 
dall'ambiente in cui si trovano i tessuti, ovvero l'acqua. [37–41] 
     L'acqua in esame è l'acqua presente nella materia vivente. Essa 
presenta particolari caratteristiche biofisiche, che potrebbero spiegare il 
funzionamento di tessuti sia sani, che danneggiati. [39,42,43] 
     Questa revisione suggerisce un nuovo modello riguardante le 
caratteristiche della DS e le sue implicazioni cliniche, confrontandolo 
con la IBG, le cui alterazioni tissutali sarebbero mediate dall'acqua 
biologica situata vicino alle membrane. [39,40] 
 
2. Metodi 
 

     Abbiamo eseguito la seguente revisione narrativa seguendo le linee 
guida dello studio Gasparyan et al. [44] 
  
 
 



 
                                                                                                                        3 di 23 

______________________________________________________________________________ 

______________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     La ricerca sulla letteratura è stata condotta tra settembre e dicembre 
2020, utilizzando il seguente elenco di database, come MEDLINE 
(https://pubmed.ncbi.nlm.nih.gov/) (visitato il 30/12/2020); SCOPUS 
(https://www.elsevier.com/solutions/scopus) (accesso il 30/12/2020); 
Scholar Google (https://scholar.google.com/) (accesso il 30/12/2020); 
Cochrane Library (https://www.cochranelibrary.com/) (accesso il 
30/12/2020). 
     L'indagine è stata condotta per mezzo delle seguenti parole chiave: 
“Fibroblasti” [Termini MeSH]; "Miofibroblasti" "[Termini MeSH]; 
"Fascia" [Termini MeSH]; "Pressione del fluido interstiziale"  [Termini 
liberi]; "Onde dipolo" [Termini liberi]; "Acqua della zona di esclusione" 
[Termini liberi]; "Rilevamento del flusso" [Termini liberi]; "Acqua" 
[Termini MeSH]; "Struttura dissipativa" [Termini liberi]; "Sforzo di 
taglio" [Termini MeSH]; "Meccanosensori" [Termini liberi]; "Flusso del 
fluido interstiziale" [Termini liberi]; "Acquaporine" [Termini liberi]; 
"Infiammazione" [Termini MeSH]; "Attività antidromica" [Termini 
liberi]; "Infiammazione di basso grado" [Termini liberi]; "Malattie 
metaboliche" [Termini liberi] "Para-infiammazione" [Termini liberi]. 
     Per la strategia di ricerca abbiamo utilizzato gli operatori Booleani 
come “AND” e “NOT” e tutti i termini chiave da soli, unendo i risultati. 
 
Criteri di inclusione degli studi 
 

     Sono stati inclusi tutti gli studi che coinvolgono test umani e animali, 
nonché studi di laboratorio (in vivo ed ex vivo). 
     La strategia di ricerca includeva revisioni, studi clinici e studi 
osservazionali. Tutti gli altri tipi di studi sono stati esclusi. 
     Nessun tipo di restrizione è stata stabilita riguardo alla data di 
pubblicazione e all'esito dello studio e sono stati presi in 
considerazione solo gli studi scritti in inglese. 
     Ulteriori ricerche sono state eseguite anche attraverso l'elenco di 
riferimento degli articoli inclusi, risultando in una “procedura a 
valanga” [45]. 
     Tutti i duplicati sono stati identificati e rimossi mediante il software 
Zotero, software online della Corporation for Digital Scholarship. 
     Tre membri di questo gruppo di ricerca (EA, LDP e MV) hanno 
effettuato una preliminare ricerca indipendente, producendo 13.730 
risultati totali. Dopo aver escluso i duplicati, sono stati rimossi 11.331 
articoli. Eventuali discrepanze sono state risolte consensualmente, con 
LC come arbitro. Un metodo di selezione è stato eseguito dividendo 
l'intero processo in tre fasi successive: (1) screening del titolo; (2) 
screening dell’abstract; (3) screening completo dell’articolo. 
 
 

https://pubmed.ncbi.nlm.nih.gov/
https://www.elsevier.com/solutions/scopus
https://www.cochranelibrary.com/
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3. Risultati 
 

     Settantacinque articoli sono stati inclusi in questa revisione (Fig. 1). 
Per maggiore chiarezza, si è deciso di suddividere i risultati in 3 macro 
temi intitolati: (1) ridefinire l'infiammazione; (2) un po’ di acqua, (3) 
cellule e fluidi corporei; (4) aspetti di biofisica. 
 
 

 
 
Figura 1. Diagramma di flusso per la selezione degli studi 

 
3.1. Ridefinire l’infiammazione 
 

     Negli organismi viventi, l'infiammazione è il meccanismo adattativo 
e difensivo contro un gran numero di stimoli dannosi, capace di 
modulare la riparazione dei tessuti, al fine di ripristinare le funzioni 
fisiologiche. [46,47] 
     Recenti scoperte sull'infiammazione mostrano che particolari 
patologie sono mediate da risposte infiammatorie definite IBG o 
"infiammazione cronica di basso grado". [48-52] 
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Medzhitov [37] suggerisce che alcune patologie croniche, come il 
diabete di tipo II, malattie cardiovascolari e l'aterosclerosi, non 
sarebbero causate dal classico meccanismo di infiammazione. La IBG 
determina un diverso grado di espressione della funzione cellulare e, di 
conseguenza, dei tessuti, generandone un malfunzionamento; così, la 
risposta tissutale è modulata dallo stato quantitativo di infiammazione. 
L’autore definisce tale condizione “para-infiammazione”, definendola 
un fenomeno che si colloca tra lo stato omeostatico basale del tessuto e 
la risposta infiammatoria vera e propria. 
    Tale risposta sarebbe mediata principalmente dai macrofagi residenti 
nei tessuti; quindi, la funzione della para-infiammazione sarebbe quella 
di stimolare il tessuto ad adattarsi alle condizioni di stress. La para-
infiammazione sarebbe presente senza evidenti infezioni o lesioni e il 
suo stato prolungato nel tempo determinerebbe una condizione di 
infiammazione cronica del tessuto. 
    A conferma del ruolo e delle caratteristiche della IBG, Antonelli et al. 
[52] precisano che la dinamica di questo tipo di infiammazione 
differisce da una normale condizione infiammatoria. In quest'ultima, vi 
è un'elevata concentrazione degli elementi della risposta immunitaria 
innata (citochine infiammatorie), associata ad alti livelli di proteina C-
reattiva (PCR) (Figura 2A). 
    Nel caso della IBG, tali condizioni non sarebbero presenti. Infatti i 
livelli di PCR risultano essere modesti, la IBG non è il risultato di 
infezioni o lesioni tissutali, né della presenza dei classici segni di 
infiammazione definiti da Celso, come calore (calor), dolore (dolor), 
arrossamento (rubor) e gonfiore (tumor). Pertanto, la IBG sarebbe una 
condizione sistemica legata all'alterazione delle funzioni di tessuti e 
cellule che discostano da uno stato di omeostasi, fenomeno che spesso 
aumenta nel tempo. [37] 
    Il concetto di “omeostasi”, sostituito negli ultimi anni dal termine 
“allostasi”, è inteso come un sistema di adattamento alle variazioni 
ambientali, una “stabilità attraverso il cambiamento”. [38,53,54] Il 
carico allostatico rappresenta la spesa metabolica atta a mantenere tale 
adattamento. 
    Se questo carico è eccessivo e dura a lungo, è in grado di generare 
una condizione di esaurimento delle capacità adattative (sovraccarico 
allostatico), possibile causa di gravi patologie. Le sostanze coinvolte 
sono citochine infiammatorie e anti-infiammatorie, glucocorticoidi e 
catecolamine. [55,56] 
     Le disfunzioni tissutali sarebbero innescate non solo dai macrofagi, 
ma anche dalle cellule dendritiche e da una varietà di cellule che 
monitorano l’omeostasi dei tessuti. 
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                   Figura 2: diagramma del flusso narrativo 
 
     Secondo uno studio recente, [52] quando i cambiamenti 
nell'ambiente interno portano a stress cellulare (stress metabolico, 
lesioni e agenti patogeni), la IBG si manifesta come una risposta 
immunitaria innata. 
Alla base dello stress cellulare e, quindi, tissutale, con conseguente 
attivazione dell'infiammazione, ci sono meccanismi che possono 
portare allo sviluppo di alcune patologie, inclusa la risposta all’errato 
ripiegamento delle proteine (UPR). [57] Questa risposta cellulare agli 
insulti ambientali e metabolici (ad es. citochine, deprivazione di 
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glucosio, alterato stato redox cellulare, ipossia, virus, aumento del 
traffico di proteine, eccesso o carenza di alcuni nutrienti) [58] 
interromperebbe il ripiegamento delle proteine e l'accumulo di queste 
nel reticolo endoplasmatico (RE), portando così all'apoptosi cellulare. 
[59,60] 
     Relativamente al sovraccarico allostatico, un ruolo importante è 
svolto dallo stress psicosociale, come il sovraccarico di lavoro, la 
disoccupazione o l’assistenza a un familiare in pericolo di vita a causa 
di una malattia cronica. [38,61,62] 
     Secondo Rohleder et al., [61] esistono molte evidenze sperimentali 
che sottolineano una relazione diretta tra stress psicosociale e IBG. 
Infatti, vi è un aumento delle citochine, così come dell'attività 
intracellulare atta alla segnalazione infiammatoria. 
     L'effetto dell'infiammazione cronica dei tessuti è spesso mostrato 
dalle alterazioni della struttura, come avviene nella fibrosi, definita 
come una lesione della componente connettivale in un organo o 
tessuto, conseguenza dell'aumento della porzione fibrillare della 
matrice extra-cellulare (MEC). Tale condizione può verificarsi in una 
varietà di patologie vascolari, metaboliche e tumorali. La sclerosi, 
invece, si verifica in una fase successiva della fibrosi; è comunemente 
associata all'aumento della consistenza e della durezza del tessuto 
fibrotico (se le alterazioni della MEC persistono) ed è apprezzabile 
macroscopicamente anche alla palpazione. [36] 
     Le alterazioni tissutali sono condizionate dalle metallo-proteasi della 
matrice (MMP), una classe di enzimi prodotti dai macrofagi residenti, 
che viene attivata nel turnover della MEC e sarebbe influenzata da 
alcuni tipi di interleuchine (IL-13 e IL-4). [63,64] 
     In particolare, lo squilibrio tra MMP e il suo inibitore, mediato 
proprio da condizioni infiammatorie, contribuirebbe in larga misura 
allo sviluppo della fibrosi nei tessuti, aumentando la deposizione della 
componente fibrillare. [36,65,66] 
     In definitiva, la IBG è il risultato di una serie di concause: continui e 
ricorrenti stimoli nocivi, alterazioni metaboliche e ambientali e stress 
sociale che, con diverse dinamiche fisiopatologiche, determinerebbero 
l’alterazione del tessuto. [49,50] 
 
3.2. Un po' d’acqua, cellule e fluidi corporei 
 

    Il tessuto connettivo rappresenta la sede principale dei processi 
infiammatori [67] ed è una estesa rete strettamente connessa 
all'ambiente esterno, sia attraverso la contiguità cellulare, sia attraverso 
la MEC. [41] È anche considerata la chiave determinante per la 
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trasmissione delle forze meccaniche, che, a loro volta, influenzano i 
processi patologici e fisiologici, dalla guarigione delle ferite, 
all'infiammazione, fino al cancro. [68,69] 
    I fibroblasti (FB) e i miofibroblasti (MFB) sono i principali 
responsabili della tensione della matrice, nonché della sua rigidità e 
viscosità. [70] La rigidità connettivale e, in particolare, della fascia, è 
stata studiata da diversi autori. Alcuni sostengono che la contrattilità 
cellulare sia influenzata dal sistema nervoso simpatico, considerando la 
risposta dei MFB al TGF-β; [71] altri ritengono che sia influenzata 
dall'espressione di diverse citochine all'interno della MEC e dal suo 
livello di pH. [72] 
    Nello studio di Schleip et al., l'effetto di irrigidimento tissutale non è 
causato esclusivamente dalla contrazione cellulare attiva di FB/MFB, 
ma dal cambiamento nell'idratazione della matrice. L'acqua, infatti, 
costituisce la componente principale del volume della fascia e le diverse 
sollecitazioni su di essa influiscono sulla velocità di reidratazione. [73] 
    Un recente studio sull'interstizio avvalora l'influenza reciproca tra 
forze meccaniche, dinamica dei fluidi e risposta cellulare. I fasci di 
collagene costituenti la complessa rete dell'interstizio sono, infatti, privi 
di una membrana basale e, quindi, direttamente a contatto con il fluido 
interstiziale (FI). [74] 
    Pertanto, ciò che si verifica è un'interazione diretta tra le forze fluide 
e il rimodellamento della fibra locale, in grado di fornire alla cellula un 
feedback meccanico sensibile rispetto all'architettura della matrice. [75] 
    I flussi di fluido creano, inevitabilmente, stress da taglio (FSS), [75] i 
quali agiscono come regolatori di diversi processi biologici 
(differenziazione ed espressione genica) su diversi tipi cellulari: 
FB/MFB, comprese le cellule staminali pluripotenti e somatiche, [76] 
secondo il principio di meccanotrasduzione. [77–79] 
    Inoltre, il fluido interstiziale può alterare la distribuzione 
extracellulare di chemochine, o la secrezione di morfogeni, e, quindi, la 
migrazione cellulare diretta o la morfogenesi capillare, nonché 
l’allineamento delle fibre locali della MEC. [80] 
     L'attività dei fluidi nell'ambiente biofisico dell'infiammazione dei 
tessuti è importante anche in assenza di mediatori esogeni, come il 
TGF-β1, e con bassi livelli di flusso interstiziale. [81] Le dinamiche 
fluidiche, quindi, hanno implicazioni significative per il tessuto, sia da 
un punto di vista funzionale, che patologico. [74] 
     I meccanismi infiammatori determinano un effetto sulla migrazione 
e sull'accumulo di fluidi nello spazio extracellulare [37] ed una 
condizione di aumento del gonfiore cellulare; questi sono tutti segni di 
un'omeostasi alterata che è espressa dall'edema, i cui mediatori 
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sarebbero il FI e la sua pressione (PFI). Infatti, il richiamo di fluidi dal 
flusso vascolare verso lo spazio interstiziale, almeno nella fase iniziale 
dell'edema, dipenderebbe da una riduzione della PIF, un meccanismo 
coinvolto in varie reazioni infiammatorie e traumi tissutali [82,83]. 
    Alla base dell’abbassamento della PFI ci sarebbe il rilascio delle 
tensioni esercitate dai fibroblasti sulle reti di collagene e microfibrille 
nel tessuto connettivo. 
    Il meccanismo molecolare sarebbe determinato dall'azione di blocco 
delle citochine (PGE1, IL-1, IL-6 e TNF) sulle integrine di membrana dei 
fibroblasti, causando una perdita di tensione nella MEC, con 
conseguente richiamo del fluido. Solo nelle fasi successive dell'edema, 
il richiamo del fluido sarebbe dovuto all'aumento della permeabilità 
capillare e della PI [68,84]. 
    È interessante notare che il blocco delle integrine da parte delle 
citochine pro-infiammatorie, nonché (di conseguenza) l'entità 
dell'abbassamento della PFI sono mediate dal grado di infiammazione 
e possono verificarsi anche con IBG. La MEC si comporterebbe come 
una spugna che, perdendo la sua capacità di tensione, si gonfia e 
richiama fluido al suo interno [68]. In caso di una significativa 
riduzione della PIF dovuta all'elevata infiammazione, la filtrazione 
capillare aumenta fino a 10-20 volte, ed è associata alla denaturazione 
del collagene (come nella infiammazione neurogena) [84] (Figura 2B). 
    Per quanto riguarda i cambiamenti nei fluidi cellulari in risposta 
all'infiammazione, un ruolo importante sarebbe giocato dalle 
acquaporine (AQP) [85,86]. Le AQP sono un gruppo di proteine canale 
di membrana che facilitano il trasporto passivo dell'acqua all'interno 
della cellula. Sono presenti in gran numero in una varietà di tessuti 
corporei (cervello, sinovia e cartilagine) e espresse anche sulle 
membrane di cellule che non svolgono un ruolo evidente nel trasporto 
di fluidi (adipociti e cellule muscolari) [87,88]. 
     In presenza di processi associati a variazioni del volume cellulare 
[migrazione, infiammazione, proliferazione e morte cellulare], le AQP 
giocano un ruolo importante e molti autori le definiscono veri e propri 
regolatori dell'infiammazione osmotica indotta dallo stress [89,90]. 
    Si può ipotizzare che le alterazioni morfologiche e, quindi, funzionali 
dei tessuti siano dovute alla quantità e allo spostamento dei fluidi al 
loro interno e mediate da una condizione infiammatoria. 
 
3.3. Aspetti biofisici 
 

    Alla luce di quanto appena descritto e tenendo conto che l'acqua 
rappresenta la componente principale della materia vivente (circa il 
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70% della massa totale e il 99% del numero di molecole), dobbiamo 
ampliare la nostra comprensione delle dinamiche relative ai tessuti, 
considerando l'acqua biologica un elemento fondamentale dotato di 
particolari comportamenti. [42] 
    In prossimità delle superfici idrofile, ed in particolare, delle 
membrane biologiche, le molecole si organizzano ordinatamente in 
vaste aree del volume di massa dell'acqua; queste zone sono definite 
“zone di esclusione” (EZ) o “acqua vicinale”, perché respingono le 
particelle e i soluti che misurano da 10 a 0,1 nm. [43,91–93] 
    Le EZ hanno una struttura d'acqua caratteristica, in cui le molecole 
sono organizzate in strati a nido d'ape, che si sovrappongono in 
direzione parallela alle superfici della membrana, sia all'interno che 
fuori dalla cellula. [94] L'acqua EZ ha specifiche proprietà 
chimico/fisiche. Ha una viscosità maggiore ed è più stabile dell'acqua 
“bulk” (“sfusa”) (distante dalle superfici idrofile): la sua motilità 
molecolare è più ristretta; il suo spettro di assorbimento della luce è 
maggiore dell’acqua bulk, sia nella gamma dei raggi UV che RI; e, 
infine, ha un indice di rifrazione più elevato. [43] 
    Le proteine all'interno degli organismi viventi sono circondate da 
acqua organizzata in EZ. [95] Quando quest'acqua è carente, le proteine 
si troverebbero al di fuori del loro normale ambiente funzionale, 
causando un'anomalia nel loro ripiegamento. 
    La maggior parte delle funzioni cellulari, come la contrazione 
muscolare, la secrezione e la conduzione nervosa, dipendono dal 
ripiegamento delle proteine. [57-60] L'acqua si organizza in EZ anche 
nella stabilizzazione della tripla elica del collagene e nell'orientamento 
delle particelle minerali all'interno della matrice ossea; [96] l'alterazione 
dell'EZ porterebbe quindi a funzioni alterate o patologiche. [39,43] 
    Secondo gli autori, una possibile spiegazione per gli effetti olistici di 
una varietà di agenti e sostanze che promuovono la salute, come i 
nutraceutici e alcuni tipi di grassi, potrebbe risiedere nella loro capacità 
di ripristinare l'accumulo di acqua EZ all'interno delle cellule, 
influenzando la salute generale. [39,40]  
    Le EZ dell'acqua, quindi, giocano un ruolo di notevole importanza 
sia a livello extra-cellulare, che intra-cellulare; Kerch [97] associa 
l'invecchiamento e le varie patologie alla presenza di “loosely bound 
water” (acqua poco legata). 
    Le EZ avrebbero anche effetti sul movimento dei fluidi, poiché, 
all'interno di strutture tubolari, come i capillari sanguigni, i fluidi 
possono muoversi indipendentemente dal gradiente di pressione. Ciò 
si verifica a causa di una differenza di potenziale tra il nucleo del 
tubulo e la superficie interna di EZ, creando un flusso che gli autori 
d fi i  “ id ”  [98 99] 
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definiscono “auto-guidato”. [98,99] 
    Gli stessi autori ipotizzano uno scenario in cui il flusso sanguigno sia 
possibile, in alcuni distretti, senza contrazione cardiaca. Più in 
dettaglio, le molecole di solfato, che si trovano nella maggior parte 
delle cellule del corpo e, in particolare, nell'endotelio, svolgerebbero un 
ruolo nel preservare le EZ. 
    La carica negativa fornita dagli ioni solfato attaccati ai 
glicosaminoglicani nella parete capillare genera un campo 
elettromagnetico, il cosiddetto “potenziale di flusso vascolare 
elettrocinetico” (EVSP). [96,99] Ciò determina sia la facilità di 
movimento del fluido (dovuta a un effetto cuscinetto), sia una reazione 
dell'endotelio stesso, favorendo il rilascio di ossido nitrico. [100] 
    Uno dei modelli teorici utilizzati per analizzare e spiegare le 
interazioni e l'organizzazione dell'acqua biologica è quella della teoria 
quantistica dei campi (QFT) e dell'elettrodinamica quantistica (QED). 
[101,102] Secondo questi modelli, le molecole devono essere 
considerate oggetti capaci di promuovere, intrinsecamente, fluttuazioni 
spontanee, in grado di scambiare energia con l'ambiente circostante. In 
condizioni ambientali idonee, quali la densità delle molecole e la giusta 
temperatura, tutte le unità oscillano spontaneamente all'unisono, 
secondo una fase ben definita ed in sincronia con il campo 
elettromagnetico (EMF), che ha la stessa fase. [42,101] 
    Questa regione spaziale è chiamata “dominio di coerenza” (DC), ha 
una dimensione sub-micronica e contiene milioni di molecole. [42,102] 
    Nella EZ dell'acqua, le molecole si organizzano formando dei DC. Al 
loro interno avviene un blocco di fase, dando luogo ad un'oscillazione 
molecolare collettiva costituita dalla lunghezza d'onda del EMF. 
[42,93,101–104] Nei tessuti biologici, la presenza di elettroni nell'acqua 
disponibile genera la possibilità di innescare reazioni chimiche. Infatti, 
l’oscillazione coerente delle molecole d'acqua si verifica tra la 
configurazione di energia minima, in cui tutti gli elettroni sono 
fortemente legati, e una configurazione eccitata, la cui energia è appena 
al di sotto del livello necessario per strappare un elettrone dalla 
molecola (12, 06 eV). [105–107] 
    Pertanto, l'acqua biologica nell'EZ presenta elettroni quasi liberi 
disponibili per le reazioni chimiche metaboliche, pur rimanendo legati 
alla molecola d'acqua [93]. I DC dell'acqua ricevono energia 
dall'ambiente esterno e dalla luce, che aumenterebbe l’energia 
potenziale della EZ, con funzioni di riserva [108]. (Figura 2C) 
     Negli organismi viventi, i DC possono organizzarsi in un insieme 
coerente di più DC, che porterebbe l'estensione spaziale della regione 
coerente fino a dimensioni macroscopiche, come quelle di cellule, 
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organi e tessuti. [42,101] 
    Da un punto di vista termodinamico, i DC dell’acqua possono essere 
considerati come strutture dissipative. Un sistema dissipativo è in 
grado di auto-organizzarsi attraverso lo scambio continuo di energia 
con l'ambiente esterno, diminuendo la sua l'entropia. [106,109–111] 
    Infatti, quando la frequenza di oscillazione del DC corrisponde a 
quella di alcuni tipi di molecole target (monomeri non acquosi), che si 
trovano ai suoi limiti esterni del DC, queste molecole sono attratte 
dall'EMF del DC, diventandone parte [107]. 
    Le molecole utilizzano l'energia immagazzinata nel DC e possono 
quindi effettuare reazioni chimiche che producono nuove specie di 
biomolecole, determinando l’abbassamento dell'entropia e portando ad 
un'evoluzione, nel tempo, dell'organismo biologico [107,112]. In 
definitiva sarebbe l'acqua, con i suoi DC e i loro campi elettromagnetici, 
a far sì che diverse reazioni chimiche avvengano, con precisione, tra 
alcune molecole e non con altre. [113] 
 
4. Discussione e ipotesi 
 

    Con l'acronimo TART (dolorabilità, asimmetria, anomalia del ROM e 
alterazioni della trama tissutale), la letteratura osteopatica descrive 
accuratamente i segni clinici caratteristici della DS, cui si rivolge il 
TMO. [7,8,21] Tuttavia, alcuni autori non sono d'accordo sulla rilevanza 
da attribuire ai suddetti segni: alcuni reputano fondamentale 
l’anomalia del ROM per la diagnosi di DS, ma non esistono evidenze 
univoche sulla sua riproducibilità nella valutazione. [114] Altri autori 
suggeriscono la necessità della presenza di almeno 2 di questi 4 segni; 
altri ancora non considerano il segno di dolorabilità o iper-sensibilità. 
[1,5–7,115] Per quanto riguarda le asimmetrie delle strutture muscolo-
scheletriche, queste possono verificarsi per una varietà di cause, 
risultando, quindi, difficilmente attribuibili alla sola DS. [116–118] 
    Alla luce dei risultati di questa revisione, riteniamo che tra i 4 segni 
clinici considerati, i cambiamenti della struttura del tessuto siano i più 
significativi per definire una DS, proponendo così l’ipotesi che la DS 
possa essere paragonata a una condizione di IBG. 
    I meccanismi alla base della DS sono ancora ampiamente discussi in 
letteratura, ma è ragionevole pensare che senza prima avere alterazioni 
della struttura dei tessuti, causate da fenomeni infiammatori, la 
presenza degli altri tre segni clinici non sia possibile. 
Suggeriamo che un fenomeno infiammatorio possa determinare 
un'alterazione del tessuto, come descritto in precedenza, e solo 
successivamente possano verificarsi dolorabilità, alterazione del ROM e 
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successivamente possano verificarsi dolorabilità, alterazione del ROM e 
asimmetria delle strutture muscolo-scheletriche (Figura 2D). 
    La successione appena descritta potrebbe essere spiegata da uno dei 
meccanismi più accreditati dell'insorgenza e mantenimento della DS: 
l'infiammazione neurogena, [1,119,120] in cui i nocicettori afferenti 
primari (PAN) determinano il rilascio in periferia di neuropeptidi, 
come la sostanza P e il peptide correlato al gene della calcitonina 
(CGRP). I suddetti neurotrasmettitori vengono rilasciati nello spazio 
peri-vascolare ed extra-cellulare periferico, attraverso un segnale 
antidromico, provocando una risposta infiammatoria locale con 
alterazioni del tessuto circostante. Si noti che quest'area, per mezzo del 
ramo assonale, può essere molto ampia. [121]  
    Questi neuropeptidi hanno funzioni vasoattive, richiamando le 
cellule immunitarie, attivando i mastociti e rilasciando istamina, 
agendo così sullo stato trofico dell'organo innervato. [21,119,121,122] 
Insieme, contribuiscono alla possibile genesi di alterazioni tissutali, 
influenzando anche il recupero delle lesioni tissutali e la loro 
riparazione. [123] 
    Le fibre nervose coinvolte sarebbero prevalentemente le Aδ e C 
(scarsamente mielinizzate), facenti parte della componente interocettiva 
e, per questo, rappresentanti la porzione afferente dell’efferenza 
simpatica. [124] 
   È stato dimostrato che l'efferenza simpatica gioca un ruolo decisivo 
nell’insorgenza di fenomeni infiammatori. [125] Questi risultati 
concordano con quanto sottolineato da Denslow e Korr riguardo alla 
DS, in quanto legata all'espressività dei fenomeni riconducibili alla 
infiammazione neurogena [126] e all’innervazione ortosimpatica 
autonomica. [127] 
    Possono esistere meccanismi in grado di indurre alterazioni dei 
tessuti, associati con la dinamica dell'infiammazione neurogena. Queste 
dinamiche sono tutte probabilmente legate a fenomeni infiammatori, 
come la risposta all’errato ripiegamento delle proteine (UPR), [57–60] 
nonché l'alterazione delle funzioni della MMP, [63,64] che 
determinerebbero cambiamenti nella funzione della MEC. [65,66] 
Ultimo, ma non meno importante, il sovraccarico allostatico causerebbe 
alterazioni tissutali. [61] 
    La DS non rappresenta una vera condizione patologica. [4] Infatti, 
come per la IBG, non avrebbe una causa diretta, come traumi o lesioni 
tissutali. Piuttosto, la DS appare come un'alterazione della funzione 
tissutale, un segno di alterata omeostasi, spesso duratura nel tempo, e, 
come la IBG, può essere collocata tra uno stato basale omeostatico e 
l'effettiva risposta infiammatoria. [37,52] 
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     Esistono studi sull'efficacia del TMO in persone sane con diagnosi 
non sintomatica di DS; [115.128–130] le condizioni cliniche di questi 
soggetti potrebbero essere associate con IBG, in cui i marker di 
infiammazione del sangue sono modesti.  
    Tuttavia, i segni di DS non sono associati ai classici segni di 
infiammazione. La DS rappresenta un segno di alterazione metabolica 
che si manifesta con l'alterazione della trama tissutale, portando a 
fibrosi tissutale ed eventuale sclerosi, quindi, è diagnosticabile 
attraverso la palpazione. [20, 21, 36] 
    L'esistenza di una barriera di restrizione all'interno del ROM, un 
segno caratteristico di DS, [20–22] implica l'alterazione, sia quantitativa 
che qualitativa, di un tessuto o di una regione articolare in un 
determinato distretto. Questa alterazione si genera su un substrato 
infiammatorio, senza necessariamente mostrare segni di infiammazione 
classica. [22] 
 
Ipotesi 
 

    Una volta confermate le alterazioni tissutali e la loro causa legata ai 
fenomeni di IBG, ipotizziamo che l'elemento mediatore sia il particolare 
comportamento dei fluidi nei tessuti. Infatti, la rigidità tissutale non 
sarebbe causata esclusivamente dalla contrazione attiva delle 
popolazioni cellulari presenti (ad esempio, dei fibroblasti nel tessuto 
connettivo), ma potrebbe anche derivare dal cambiamento della 
quantità di acqua della MEC. [73] 
    La modalità di distribuzione dei fluidi all'interno del nostro 
organismo dovrebbe essere ridefinita tenendo conto delle nuove 
scoperte sulle caratteristiche dell'interstizio e della sua collocazione 
topografica nei vari distretti corporei. [74, 131] 
    Le stesse forze sviluppate dal movimento dei fluidi, come FSS e PFI, 
rispetto alla IFG, possono determinare alterazioni nella funzione e nella 
forma del tessuto stesso. [68, 75, 76, 80, 81, 84] A livello cellulare, gli 
spostamenti di fluidi mediati da AQP potrebbero svolgere un ruolo 
predominante nelle alterazioni tissutali, tenendo conto che questi canali 
di membrana rispondono a fenomeni infiammatori. [85, 86, 88-90] 
L'acqua biologica reagirebbe a una serie di meccanismi legati 
all'infiammazione che potrebbero essere spiegati dalla biofisica. La 
presenza di EZ sarebbe fondamentale e la sua assenza determinerebbe 
vere e proprie disfunzioni di cellule e tessuti, portando ad una 
condizione patologica. [39,132]  
    Lo spostamento dei fluidi non sarebbe legato solo all'anatomia, come 
considerato fino ad ora, ma potrebbe dipendere dalla struttura della EZ 
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in vasi e capillari. [96,98–100] Questo meccanismo potrebbe intervenire 
anche a livello dell'interstizio e in aree più ampie del corpo, [131] con 
una maggiore libertà di movimento dei fluidi. 
    Si può ipotizzare che le risposte al TMO a livello tissutale, durante e 
subito dopo il trattamento, possano dipendere dalla fluidodinamica 
all'interno della MEC, con meccanismi ancora da chiarire. Tali effetti, 
infatti, non sarebbero coerenti, nel breve termine, con le tempistiche 
relative al rimodellamento della matrice. Se così fosse, sarebbe 
necessario un periodo relativamente più lungo. [70] 
    Come dimostrato dai risultati degli studi in vitro, il ripristino delle 
funzioni tissutali e, in particolare, del tessuto connettivo, mediante 
tecniche osteopatiche indirette, [133] potrebbe derivare dalla 
produzione di fattori di crescita e citochine antinfiammatorie (es. 
fattore di crescita-bb). Questi sarebbero in grado di invertire il blocco di 
attività sulle integrine, ripristinando la normale tensione e, quindi, 
l'idratazione della MEC. [28,29,73,84,133,134] 
    Tuttavia, in letteratura osteopatica, non ci sono prove solide 
dell'efficacia del TMO sulle malattie infiammatorie. [16,35,128,135] Ciò 
potrebbe dipendere dall'affidarsi a parametri di riferimento 
difficilmente indicativi: la IBG e la DS non sono caratterizzate da un 
livello elevato di marker infiammatori rilevabili negli esami 
ematochimici di routine. 
  L'infiammazione potrebbe essere considerata un processo necessario 
per ripristinare le condizioni di stabilità dei tessuti. [46] Il conseguente 
ricambio tissutale sarebbe il mezzo attraverso il quale i solfati, presenti 
nei glicosaminoglicani e necessari per l'esistenza di EZ, vengono 
sintetizzati nuovamente. Il risultato sarebbe il ripristino di una EZ 
fisiologica dell'acqua, adeguata ai processi metabolici. [96] 
    Considerando che lo stato di salute dei tessuti può essere legato alla 
presenza di acqua, è ipotizzabile che l'effetto del TMO risieda proprio 
nel ripristino e nella normalizzazione delle EZ, in aree con domini di 
coerenza macroscopica, attraverso l'intervento del campo 
elettromagnetico del tessuto stesso. 
     Tale ipotesi, tutta da verificare sperimentalmente, troverebbe 
riscontro nelle affermazioni di De Ninno et al., che ritengono possibile 
individuare una omeostasi elettromagnetica (EH) correlata ai tessuti 
viventi, che permetterebbe una comunicazione inter-cellulare molto più 
veloce e a lunga distanza. [93] 
    Secondo la nostra ipotesi, l’azione anti-infiammatoria del TMO 
indurrebbe un effetto sulla MEC e sul ripristino delle condizioni 
elettromagnetiche ottimali (attraverso i solfati presenti sulle membrane 
cellulari), per ricostituire l'EZ sulle membrane cellulari e poi sui tessuti, 
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una condizione definita “omeostasi elettromagnetica” (Figura 2E). 
     La perdita dell'oscillazione collettiva dei DC, correlata alla riduzione 
dello spessore delle EZ, non permetterebbe al tessuto biologico di 
dissipare energia con l'ambiente esterno. Questa condizione 
aumenterebbe la sua entropia, facendole perdere così la capacità di 
auto-organizzarsi [42,93,107] e, di conseguenza, la sua salute. 
    I risultati descritti sono in linea con la conoscenza degli elementi 
fondamentali della medicina osteopatica, come il meccanismo 
respiratorio primario (MRP) con i suoi 5 principi, e le dinamiche dei 
fluidi correlate al TMO. [136,137] 
 
5. Conclusioni 
 

    La nostra revisione sottolinea l'importanza dei fluidi biologici sulla 
salute e il loro comportamento in relazione all'approccio osteopatico. 
    I risultati di questa revisione hanno evidenziato una diversa visione 
della DS, paragonandola alla IBG; questo ci permette di definire i 
cambiamenti della trama tissutale come i principali segni da 
considerare nella diagnosi di DS. 
    La terapia manuale, in particolare le tecniche osteopatiche indirette, 
avrebbe effetti su molteplici aree biologiche, probabilmente legate alla 
regolazione delle EZ dell’acqua e allo stato infiammatorio dei tessuti. 
Ripristinando l'adeguato substrato fluidico di base in un sistema 
biologico, la terapia osteopatica consentirebbe la manifestazione di 
meccanismi di autoguarigione. 
    Questo principio è coerente con i principi storici dell'osteopatia, che 
la presente rassegna tenta di ampliare con il supporto della letteratura 
recente. La ricerca in questo campo è ancora da approfondire, ma la 
nostra proposta ci sembra plausibile proprio per inquadrare le 
dinamiche relative al TMO. Crediamo che ciò possa aprire, in futuro, 
uno scenario affascinante di possibilità e conoscenze terapeutiche. 
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Lista di Abbreviazioni 
Disfunzione Somatica 

Infiammazione di basso grado 

Matrice extra-cellulare 

Zona di esclusione 

Classificazione internazionale delle malattie 

Trattamento manipolativo osteopatico 

Proteina C-reattiva 

Risposta all’errato ripiegamento delle proteine 

Reticolo endoplasmatico 

Metallo-proteasi della matrice 

Fibroblasti 

Miofibroblasti 

Fluido interstiziale 

Stress fluidico da taglio 

Pressione fluidica interstiziale 

Acquaporine 

Potenziale di flusso vascolare elettrocinetico 

Teoria quantistica dei campi 

Elettrodinamica quantistica 

Campo elettromagnetico 

Dominio di coerenza 

Dolorabilità, asimmetria, anormalità del ROM, cambiamenti della texture tissutale 

Nocicettori afferenti primari 

Peptide correlato al gene della calcitonina 

Omeostasi elettromagnetica 

Meccanismo respiratorio primario 

 
(DS) 

(IBG) 

(MEC) 

(EZ) 

(ICD) 

(TMO) 

(PCR) 

(UPR) 

(RE) 

(MMP) 

(FB) 

(MFB) 

(FI) 

(FSS) 

(PFI) 

(AQP) 

(EVSP) 

(QFT) 

(QED) 

(EMF) 

(DC) 

(TART) 

(PAN) 

(CGRP) 

(EH) 

(MRP) 
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